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Introduction

Malignant tumors have emerged as the leading cause of 
patients’ death worldwide. Accordingly, tumor-related stud-
ies have always been at the forefront of medical science. 
In spite of significant advances in the molecular basis of 
tumors, it is difficult to bring new drugs from preclinical 
screening to clinical trials for their high development costs 
and low success rates. Drug repurposing is the process of 
exploiting new indications for the existing drugs or biolog-
ics [1]. The advantage of drug repositioning is that these 
types of drugs are probably to enter clinical trials faster and 
less expensively, due to previously verified pharmacoki-
netic, toxicology, and safety data. New drugs for malignant 
tumors may be found by drug repositioning. Thus, interests 
in this strategy have been growing rapidly in recent years. 
For example, aspirin, the oldest non-steroidal anti-inflamma-
tory drug (NSAID), has been shown to benefit on multiple 
aspects of cancer chemoprevention, by reducing both inci-
dence and mortality [2], and metastasis in patients already 
diagnosed with cancer [3]. Besides, there are other examples 
of repositioned drugs in oncology, such as metformin, tha-
lidomide, digoxin, disulfiram, itraconazole, and so on [4].

Among non-oncological drugs, the antacid drugs proton 
pump inhibitors (PPIs), commonly available and low cost, 
are one promising example that could be repurposed. PPIs 
as benzimidazole derivatives which are essentially  H+–K+-
ATPases inhibitors, are currently used in the treatment of 
acid-related diseases such as gastric ulcer. Commonly, the 
PPIs family includes omeprazole, esomeprazole, pantopra-
zole, lansoprazole, rabeprazole, and ilaprazole. Particularly, 
ilaprazole (also known as IY-81149), the latest PPI, was 
synthesized by Il-Yang (South Korea) and presently devel-
oped by Livzon Pharmaceutical Group Inc. (China), and has 
been approved by the State Food and Drug Administration of 
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China (license ID: CN 1121714A) [5, 6]. Recently, encour-
aging reports on the application of PPIs in cancer therapy 
have sprung up. The enhancement of chemotherapeutic 
effects as well as inhibition of proliferation and induction of 
apoptosis by PPIs has been reported as early as 1999 [7–9].

Unlike the traditional cytotoxic agents, PPIs exert anti-
tumor effects by targeting the tumor microenvironment. 
Tumor microenvironment is characterized by acidification 
and hypoxia, which is induced by the chronic imbalance 
of cellular homeostasis occurring in tumor cells [10]. The 
acidic extracellular environment favors tissue damage, acti-
vation of destructive enzymes in the extracellular matrix 
(ECM), and the increased metastatic potential as well as the 
acquisition of multidrug resistance (MDR) cell phenotypes. 
Actually, the abnormal pH gradient between the extracel-
lular environment and the cell cytoplasm is regulated by 
different ion/proton pump systems including the vacuo-
lar-H+-ATPase (V-ATPase), whose expression and activity 
are enhanced in tumors [11, 12]. For this reason, targeting 
tumor pH homeostasis is being considered as a valid and 
feasible strategy against cancer. The application of specific 
inhibitors of V-ATPase might promise the inhibition on the 
survival of tumor cells, the reduction of tumor metastasis, 
and the reversal of chemoresistance by decreasing the acid-
ity of tumor microenvironment. It is generally believed that 
PPIs might provoke the disruption of pH homeostasis by 
targeting V-ATPase on tumor cells, which is the theoretical 
basis for PPIs to play an anti-cancer role [8, 13, 14]. Besides 
V-ATPase, scientists have made a breakthrough in exploit-
ing other molecular mechanisms by which PPIs can induce 
varied anti-tumor activities. In this review, we focus on the 
new therapeutic applications of PPIs in multiple cancers, 
explaining the rationale behind this approach and providing 
practical evidence.

The acidic microenvironment of tumors

The evolvement of tumor microenvironment

The tumor microenvironment evolves and adjusts its func-
tions to satisfy the compelling need of tumor cells to sur-
vive and grow. For instance, cancer cells that are eager for 
energy take up much more glucose than normal cells mainly 
through aerobic glycolysis, converting most incoming glu-
cose to lactate even under normal oxygen concentrations, 
which is the so-called “Warburg effect” [10]. Such an altered 
metabolic pattern results in an elevated production of lac-
tate and proton accumulation intracellularly. To maintain 
the intracellular pH (pHi), tumor cells have evolved vari-
ous powerful mechanisms to counteract cytosolic acidifi-
cation and discharge accumulated protons out of the cells, 
including  Na+/H+ exchangers (NHE), carbonic anhydrases, 

 H+-linked monocarboxylate transporters (MCT) and pro-
ton pumps like V-ATPase. Consequently, tumors have an 
alkaline pHi (7.2–7.4) and lower extracellular pH (pHe) 
(6.5–7.1), which is a salient feature of tumor microenviron-
ment. In the meantime, the V-ATPase also alters the pH 
gradient between the cytoplasm (alkaline) and the lumen of 
intracellular vesicles (very acidic) [11, 15].

The relationship between acidic microenvironment 
and tumors

The acidic microenvironment induces the selection of tumor 
cells which can survive these extreme conditions, leading to 
a more aggressive phenotype of tumors. Thus, the acidity 
has been shown to play a key role in resistance to chemo-
therapy [16], proliferation, metastasis [17], and immune 
escape of tumor cells [18]. In addition to activating NF-κB 
and a number of genes such as p53, p21, as well as Bax, 
Cyclins, and HSPs which are known to promote malignant 
progression [19], acidic environment suppresses radiation-
induced apoptosis, and prolonged radiation-induced G2 
arrest in cancer cells, which results in DNA damage repair 
[20, 21]. The metastatic potential of tumor cells is believed 
to be regulated by the interactions between tumor cells and 
ECM [22]. The low pHe triggers the secretion and activation 
of proteolytic enzymes including MMP-2, MMP-9, tissue 
serine proteases, adamalysin-related membrane proteases, 
cysteine proteinases cathepsins, and gelatinases, resulting 
in degradation and remodeling of ECM and thus promotion 
of tumor invasion and metastasis [17]. The up-regulation of 
pro-angiogenic factors such as VEGF and IL-8 also contrib-
utes to the metastasis process [19].

Tumor acidity also provides favorable conditions 
for the development of chemoresistance. Weakly basic 
drugs, like doxorubicin and vinblastine, can be proto-
nated in acidic extracellular environment, leading to ion-
trapping, which retards the uptake of these drugs. Once 
inside tumor cells, basic drugs will be sequestrated in 
acidic organelles, such as endosomes or lysosomal-like 
vesicles, and subsequently, their elimination is carried 
out through increased activity of the secretory pathway, 
thereby limiting drug available for their molecular tar-
gets (usually DNA) [23]. Besides, the low pHe induces 
an increased activity of drug efflux pumps P-glycoprotein 
(P-gp), which is closely associated with MDR of tumors. 
As a consequence, there remains a lower concentration of 
chemotherapeutic drugs in tumor cells and thus reduced 
cytotoxic efficacy [24]. More interestingly, tumor acidity 
was found to negatively regulate tumor-specific effector 
T cells and might, indeed, contribute to the dysfunction 
of anti-tumor immunity. Thus, the acidity itself repre-
senting a mechanism of immune escape can be overcome 
by drugs targeting pH-regulatory pathways, like PPIs, 
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which increase the clinical potential of T cell-based can-
cer immunotherapy [18].

Involvement of V‑ATPase in malignancy of tumors

Among various mechanisms that regulate the tumor micro-
environment, V-ATPase is especially significant, because it 
can be inhibited by PPIs [12]. The V-ATPase is a multisubu-
nit complex consisting of a cytoplasmic domain  V1 (made of 
subunit A, B, C, D, E, F, G, and H) where ATP is hydrolyzed 
and a transmembrane domain  V0 (made of subunit a, c, c′, 
c″, and d) responsible for proton translocation. In addition to 
the expression on the membrane of many intracellular com-
partments, including endosomes, lysosomes, and secretory 
vesicles, V-ATPase also functionally locates at the plasma 
membrane of certain cells, including tumor cells, renal inter-
calated cells, osteoclasts, and macrophages, and is involved 
in processes such as receptor-mediated endocytosis, intracel-
lular trafficking, acidification of endosomes, bone degrada-
tion, and control of cytoplasmic pH [25].

In tumor cells, the extrusion of protons by V-ATPase 
causes intracellular alkalinization and extracellular acidi-
fication which are important mechanisms favoring tumor 
growth, metastasis, and chemoresistance. Inhibition of 
V-ATPase via molecular silencing suppressed the growth 
and metastasis of human hepatocellular carcinoma xeno-
grafts by the decrease of proton extrusion and the down-
regulation of MMPs and gelatinase activity, which resulted 
in blocking ECM degradation and remodeling [26]. Bafilo-
mycin, a common V-ATPase inhibitor, could delay tumor 
growth by inducing the expression of hypoxia-inducible 
factor-1α (HIF-1α), p21 as well as cell-cycle arrest [27], 
and promote apoptosis via lysosomal dysfunction and cas-
pase-3 activation in a cytochrome c-independent manner 
[28]. Compared to normal cells, V-ATPase is overexpressed 
and more active in tumor cells, especially in metastatic 
cells, which is positively correlated to their invasion and 
metastasis [29, 30]. In fact, lowly metastatic breast cancer 
cells preferentially use the ubiquitous  Na+/H+ exchanger 
and  HCO3

−-based-H+-transporting mechanisms, whereas 
highly metastatic cells use plasma membrane V-ATPase 
[29]. Thus, different uses of ion exchangers may help to 
distinguish tumor cells with different metastatic behav-
iors. Furthermore, V-ATPase has been suggested to play a 
role in the acquisition of the MDR phenotype by increased 
expression in chemoresistant cancer cells, which can be 
induced by chemotherapeutics [31, 32]. The protonation, 
sequestration, and secretion model indicates that intracel-
lular drug distribution can be affected by intracellular pH 
and lysosomal pH. Increased lysosomal pH via inhibition 
of V-ATPase contributes to the accumulation of anti-can-
cer drugs in nuclei and sensitizes tumor cells to the basic 

chemotherapeutic agents like doxorubicin, 5-fluorouracil, 
and vincristine [33].

More interestingly, the low lysosomal pH stimulates the 
activity of a battery of resident hydrolases responsible for 
the degradation of various non-selective and selective car-
gos delivered by autophagic processes. However, the role 
of V-ATPase in membrane dynamics, which is required for 
the uptake of autophagic cargo, is far from fully understood 
[34]. Recently, it was found that bafilomycin disrupted 
autophagic flux independently of its effect on V-ATPase-
mediated acidification but dependently of Ca-P60A/SERCA-
mediated autophagosome–lysosome fusion [35]. Of note, 
V-ATPase has been unexpectedly shown to be a key regula-
tor in various steps of endocytotic/recycling pathways. In 
the Wnt/β-catenin pathway, the endosomal acidic environ-
ment, provided by V-ATPase, may influence LRP6 endocy-
tosis, phosphorylation, and β-catenin activation [36]. The 
V-ATPase is also required for physiological as well as patho-
logical activation of the Notch receptor [37]. Archazolid, 
another V-ATPase inhibitor, leaded to a delayed recycling 
of the EGFR [38]. Furthermore, archazolid was shown to 
overcome trastuzumab resistance in breast cancer by retain-
ing human epidermal growth factor receptor 2 (HER2) in 
dysfunctional vesicles of the recycling pathway and conse-
quently abrogates HER2-signaling [39].

Altogether, V-ATPase may represent a promising tar-
get molecule or biomarker for cancer treatment. Molecular 
silencing and pharmacologic inhibitors of the V-ATPase 
exhibit desirable anti-cancer action, but such approaches 
may result in severe toxicity and be unfeasible and problem-
atic [40]. In contrast, PPIs as potential V-ATPase inhibitors 
are expected to make contributions and progresses in clinical 
anti-cancer application with the safety data and convenient 
administration.

Anti‑cancer activity of PPIs

Since the introduction of omeprazole in 1989, PPIs have 
steadily become the mainstays in treatment of acid-related 
disorders due to consistent patient tolerance, excellent 
safety, and superior acid suppressing capability. They are 
prodrugs requiring protonation for functional activation in 
acidic environment, accumulating selectively in acidic gas-
tric luminal space, and ultimately inhibiting acid secretion 
by covalent binding with cysteine residues in α-subunit of 
 H+/K+-ATPase [41]. Besides targeting the gastric proton 
pump, PPIs have also been shown to inhibit the V-ATPase. 
The initial evidence demonstrated that omeprazole bound 
to the cysteine residue near the nucleotide-binding domain 
in the subunit A, resulting in the inactivation of V-ATPase 
in adrenal chromaffin granules [13]. Thus, treatment with 
PPIs can provoke disruption of pH homeostasis in cancer 
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cells and exert anti-cancer effects. In addition, some stud-
ies have provided evidence for the interaction of PPIs with 
P-gp. PPIs inhibited P-gp-mediated digoxin efflux in Caco-2 
cells [42], suggesting that PPIs might act as P-gp substrates 
and inhibitors. This effect of PPIs is likely to contribute to 
reversing MDR of tumors. Indeed, mechanisms underlying 
PPIs’ anti-tumor activity are far from being entirely known 
and appear to be related to specific cancer types. Then, we 
will describe diverse biological effects of PPIs on different 
types of tumors.

Digestive system cancers

Gastric cancer

Gastric cancer remains a major health burden across the 
globe with an estimated 951,600 new gastric cancer cases 
and 723,100 deaths occurred in 2012, making it the fifth 
most common malignancy worldwide and the third leading 
cause of cancer-related deaths worldwide [43]. Early studies 
have shown that PPIs selectively induced in vivo and in vitro 
apoptotic cell death in gastric cancer [44–46]. The selec-
tive anti-cancer activity of PPIs might be related to the high 
expression of  H+/K+-ATPase in cytoplasmic membrane of 
gastric cancer cells, which is helpful to maintain the survival 
of cancer cells in acidic tumor microenvironment. Therefore, 
gastric cancer cells were more tolerant to low pH condition 
than normal gastric mucosal cells that lost viability at pH 
below 5.9, suggesting the potential selectivity of PPIs in 
targeting tumor acidity [44]. Yeo et al. [44] have reported 
that pantoprazole induced apoptosis and decreased the cell 
survival rate in gastric cancer cells via p38 activation and 
down-regulation of p-ERK 1/2, respectively. In addition, 
PPI-induced apoptosis in gastric cancer cells was dependent 
on the activation of caspase cascade via the mitochondrial 
apoptotic pathway [46]. By contrast, normal gastric mucosal 
cells showed less sensitivity to PPI profiting from the protec-
tive effect of anti-apoptotic regulators HSP27 and HSP70 
[44]. Pantoprazole also suppressed tumor growth by inhibit-
ing HIF-1α expression and its translocation into nucleus to 
interact with HIF-1β in human gastric adenocarcinoma cells 
[47]. Moreover, pantoprazole could act as the inhibitor of 
the human M2 isoform of pyruvate kinase (PKM2), a key 
enzyme that regulates aerobic glycolysis, which is critical 
for rapid growth of gastric cancer cells [48]. As inhibitors 
of V-ATPase, PPIs had anti-proliferative, pro-apoptotic, and 
anti-invasive effects on gastric cancer cells through down-
regulation of phospho-LRP6, β-catenin in Wnt/β-catenin 
signaling pathway and its target proliferation gene c-Myc, 
and the cell-cycle gene cyclin D1 [49]. Notably, the relation-
ship between PPI and Wnt/β-catenin signal pathway was 
reported using an adriamycin-resistant gastric cancer cell 
model (SGC7901/ADR) coupled with enhanced migratory 

and invasive capability and typical epithelial-to-mesenchy-
mal transition (EMT) phenotype, as well as strong activation 
of Wnt/β-catenin signaling pathway compared with parental 
sensitive cells [50]. Results showed that pantoprazole treat-
ment significantly suppressed the migration and invasion via 
inhibiting the expression of Akt, GSK-3β, and β-catenin in 
SGC7901/ADR cells. Also EMT phenotype was reversed by 
pantoprazole, accompanied by alteration of EMT markers, 
such as activation of E-cadherin and concurrent inhibition of 
N-cadherin, Vimentin, and Snail proteins. More importantly, 
pantoprazole could improve the poor responsiveness of gas-
tric tumor to the conventional chemotherapy agents which 
was associated with PPI-mediated decrease of the V-ATPase 
expression in cancer cells, resulting in the acidification of 
pHi and alkalinization of pHe. Reversed pH gradient not 
only enhanced cytotoxic effects of anti-tumor drugs such 
as adriamycin but also increased ADR level intracellularly 
[51]. Meanwhile, the V-ATPase/mTOR/HIF-1α/P-gp and 
MRP1 signaling pathway were down-regulated after pan-
toprazole administration [14]. However, the mutual rela-
tionship between any two of those proteins in the signaling 
pathway has not been confirmed. Another mechanism under-
lying PPI-induced cytotoxicity and sensitivity to cisplatin 
in gastric cancer cells is partially related to the inhibition 
of the secretion of pro-inflammatory cytokine IL-6 and the 
suppression of STAT3. The downstream targets of STAT3, 
c-Myc, cyclin D1, and Bcl-2 were also down-regulated [52].

Colorectal cancer

Colorectal cancer is the third most common cancer in males 
and the second in females, with an estimated 1.4 million 
cases and 693,900 deaths occurring in 2012 [43]. PPIs may 
have a chemopreventive effect on colorectal carcinogenesis 
by reducing inflammation. Daily injections of omeprazole 
(10 mg/kg) reduced the development of colorectal tumors 
in a mice model of colitis-induced carcinogenesis, likely 
based on the ability to inhibit the level of pro-inflamma-
tory molecules such as NO, TBA-RS, IL-6, TNF-α, and the 
expressions of iNOS and COX-2 [53]. Decreased expres-
sions of MMPs were also observed in omeprazole-treated 
mice, in accordance with significant decreases in the num-
ber of β-catenin-accumulated crypts. Notably, the chemo-
preventive actions of PPIs were independent of gastric acid 
suppression. Besides, administration of dietary omeprazole 
significantly inhibited chemically induced colon carcinogen-
esis in rats by inducing Cdk inhibitor p21 and suppressing 
the expression of cyclin A, survivin, and anti-apoptotic pro-
teins Bcl-2 and Bcl-xL [54]. More interestingly, pantopra-
zole was found to effectively inhibited the growth of colon 
tumor both in vitro and in vivo by inhibiting TOPK activities 
and the downstream signaling molecule phospho-histone  H3. 
T cell-originated protein kinase (TOPK), which belongs to 
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MAPKK family, is highly activated in human colon cancer 
cells and promotes tumorigenesis and progression. The inhi-
bition of TOPK could benefit 30–40% of colorectal cancer 
patients, which might represent a new avenue of investiga-
tion for targeted therapy [55]. The observation offered an 
alternative therapy for colorectal cancer by targeting TOPK 
with pantoprazole, or at least pantoprazole is a good lead 
compound for designing novel TOPK inhibitors [56].

Esophageal cancer

Esophageal cancer is one of the most fatal malignancies in 
the world with an estimated 455,800 new cases and 400,200 
deaths occurred in 2012 worldwide [43]. Cisplatin- and 
5-FU-based chemotherapy in combination with irradia-
tion has become standard treatment for esophageal cancer 
patients. However, the resistance of tumors to anti-cancer 
drugs is a major obstacle to overcome in the non-surgical 
anti-cancer treatment of esophageal cancer. Encouraging 
results have been reported that esomeprazole could inhibit 
tumor cell survival, metastatic potential, and enhance the 
sensitivity towards cisplatin or 5-FU in esophageal cancer 
cell lines. Interestingly, esomeprazole did not lead to intra-
cellular acidification, suggesting that the acid inhibitory 
effect was not the main action of PPI in esophageal cancer 
cell lines, while the expression of a number of resistance-rel-
evant miRNAs has been regulated by PPI. Specifically, miR-
141 and miR-200b were significantly up-regulated, whereas 
miR-376a was down-regulated after esomeprazole treatment 
in esophageal tumor cells [57]. Besides, PPIs have poten-
tial clinical use as chemoprevention agents, for example, 
rabeprazole protected against the development of esophageal 
cancer in a clinically relevant surgical rat reflux model [58]. 
Moreover, epidemiologic studies have shown that the long-
term use of PPIs had close association with lower rates of 
dysplasia and esophageal adenocarcinoma in patients with 
Barrett’s esophagus [59]. However, whether the suppression 
of dysplasia and adenocarcinoma depends on the anti-acid 
action of PPIs or not still remains to be elucidated.

Pancreatic cancer

Based on GLOBOCAN estimates, a total of 330,400 pancre-
atic cancer patients would die in 2012 worldwide, ranking 
the seventh leading cause of cancer death in men and women 
[43]. Relief of adverse events induced by chemotherapy is 
an important issue for pancreatic cancer patients, especially 
those with a poor prognosis. PPIs could be a potential pre-
ventive measure for chemotherapy-induced gastroesopha-
geal reflux disease (GERD) in pancreatic cancer patients 
[60]. In addition, omeprazole acted as a chemosensitizer 
and anti-cancer agent by modulating autophagy in pancre-
atic cancer cells [61]. Morphologically, the accumulation of 

phagophores and early autophagosomes reflected not only 
autophagy induction but also a disturbance of the lysosomal 
transport system after omeprazole treatment. Omeprazole 
led to a dose-dependent elevation of both the LC3-I and the 
LC3-II fractions in pancreatic cancer cells which pointed to 
both strong autophagy induction and impaired turnover. A 
modulation of the lysosomal transport system was proved by 
the expression of LAMP-1, Cathepsin-D, and β-COP in lyso-
some- and Golgi complex containing cell fractions. How-
ever, either the autophagy itself or its role in overcoming 
chemoresistance remained controversial. Though omepra-
zole has been detected intracellularly, it did not cause a con-
sistent change in the intralysosomal pH value of pancreatic 
cancer cells, revealing that there were other mechanisms for 
anti-tumor effects of PPI besides of V-ATPase inhibition and 
lysosomal pH elevation. By in silico screening of an FDA-
approved drug database, PPIs were identified as effective 
inhibitors of the thioesterase (TE) domain of human fatty 
acid synthase (FASN) [62]. FASN is up-regulated in many 
cancers, which plays an essential role in cancer cell sur-
vival, drug resistance, and poor prognosis [63]. PPIs directly 
bound to the active site and inhibited FASN TE with an 
activity ranking of omeprazole > pantoprazole > lansopra-
zole > rabeprazole. Thus, cancer cell subtypes with higher 
FASN activity were likely more sensitive to PPIs inhibi-
tion of survival. In clinic, the quasimesenchymal pancreatic 
ductal adenocarcinoma (QM-PDA) is the most aggressive 
type of pancreatic tumors with the lowest rates of patient 
survival. However, omeprazole could inhibit the invasion 
of QM-PDA cells through a non-genomic aryl hydrocarbon 
receptor (AHR) pathway that did not involve ligand-induced 
nuclear uptake of the AHR [64], which was potentially 
important for QM-PDA therapy.

Breast cancer

Breast cancer is the most frequently diagnosed cancer and 
the most prominent cause of cancer death in women glob-
ally, with an estimated 1.67 million cases (25% of all can-
cers) and 521,900 deaths in 2012 worldwide [43]. As com-
pared to other forms of breast cancer, triple negative breast 
cancer (estrogen, progesterone, and HER2-negative) has a 
more aggressive clinical course, tendency towards visceral 
metastases, and significantly lower survival rate with lim-
ited treatment options [65]. Encouraging results have been 
reported that combined treatment of triple negative breast 
cancer (TNBC) cells with esomeprazole increased their 
sensitivity to doxorubicin. Nevertheless, response of TNBC 
cells to esomeprazole could be mediated by gastric type pro-
ton pump  (H+/K+ ATPase) which was contrary to the previ-
ous beliefs that gastric type proton pump expression was 
restricted to parietal cells of the stomach epithelia. Inhibition 
of  H+/K+-ATPase caused a build-up of protons inside the 
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cells, lowering the intracellular pH, which decreased breast 
cancer cell growth and survival [66]. More evidence indi-
cated that PPIs had an anti-neoplastic effect in human breast 
cancer cells through its ability to suppress the V-ATPase 
activity, leading to cytosolic acidification, and lysosomal 
and endosomal alkalinization [67, 68]. Raised endosomal pH 
inhibited endosomal sequestration of doxorubicin in breast 
cancer cells, which explained the fact that PPIs pretreatment 
enhanced the distribution and cytotoxicity of doxorubicin in 
breast cancer cells both in vitro and in vivo [68, 69]. Thus, 
improving tumor microenvironment could be important in 
future development of new breast cancer treatments. Mean-
while, lansoprazole induced a large amount of intracellular 
ROS accumulation, proposing that ROS played a critical role 
in PPI-induced cell death in breast cancer cells [67]. In addi-
tion, omeprazole may have potential clinical applications for 
inhibition of breast cancer metastasis due to its AHR ago-
nist activity [70]. The anti-metastatic effect of omeprazole 
was linked to decreased expression of MMP-9 and AHR-
dependent suppression of the pro-metastatic gene CXCR4.

Genital system cancers

Ovarian cancer

Epithelial ovarian cancer (EOC) is the leading cause of death 
among all gynecological cancers and the 5-year survival rate 
is dismal at 11% for patients with stage IV and 23–41% for 
patients with stage III EOC. Paclitaxel is commonly used 
in the first-line chemotherapy after primary cytoreductive 
surgery in ovarian cancer patients [71]. The data from The 
Cancer Genome Atlas (TCGA) have shown that higher 
expression of V-ATPase mRNA was significantly coupled 
with poor survival in ovarian cancer patients. Inhibition of 
V-ATPase expression by siRNA or omeprazole significantly 
increased the cytotoxicity of paclitaxel in paclitaxel-resistant 
EOC cells. Moreover, combination treatment of omeprazole 
and paclitaxel obviously decreased the total tumor weight 
compared with paclitaxel monotherapy in a chemoresistant 
EOC animal model and a patient-derived xenograft model 
of clear cell carcinoma with relatively high expression of 
V-ATPase [72]. These findings suggest V-ATPase as a can-
didate target molecule or biomarker for cancer treatment and 
provide a potential role for PPI as a chemosensitizer in EOC.

Prostate cancer

Prostate cancer is the most frequently diagnosed can-
cer among men in developed countries where about two-
thirds of all prostate cancer cases occur among just 17% 
of the global male population in 2012 [43]. One of the key 
management strategies for prostate cancer is to overcome 
chemotherapy resistance. Pantoprazole has been shown to 

increase the cytotoxicity of docetaxel in human prostate can-
cer both in vitro and in vivo by inhibiting docetaxel-induced 
autophagy [73]. High levels of autophagy have been associ-
ated with resistance to chemotherapy, presumably because 
autophagy facilitates survival of stressed or damaged cells 
through recycling of cellular breakdown products [74]. Pan-
toprazole appeared to inhibit autophagy through a similar 
mechanism to the specific lysosomal V-ATPase inhibitor 
bafilomycin A1 which disrupts lysosomal pH regulation 
and thus prevent autolysosome formation and degradation 
of captured cytoplasmic content. In addition, pretreatment 
with pantoprazole increased docetaxel-induced expression 
of γH2AX and cleaved caspase-3, and decreased Ki67 in 
tumor sections, which are biomarkers in relation to func-
tional blood vessels of PC3 xenografts. Knockdown of Bec-
lin-1 or Atg7 increased pantoprazole-induced cytotoxicity of 
docetaxel, whereas the toxicity was not increased further by 
pantoprazole in the double knockdown cell line with absent 
autophagy [73]. Therefore, PPIs as inhibitors of autophagy 
might be considered for prostate cancer treatments combined 
with chemotherapy drugs and radiotherapy.

Melanoma

Melanoma is the leading cause of death from skin disease, 
requiring timely diagnosis and management [75]. Metastatic 
melanoma is associated with poor prognosis and still lim-
ited therapeutic options. An innovative treatment approach 
for this disease is represented by targeting acidosis, which 
can be implemented by PPIs inhibiting the V-H+-ATPase 
activity and disturbing tumor pH gradients with major con-
sequences on drug retention and traffic of acidic vesicles in 
melanoma cells [8]. Systemic esomeprazole administration 
dramatically prolonged survival time of melanoma-bearing 
animals, without any signs of systemic toxicity [30]. Indeed, 
the anti-tumor effects of PPIs were pH-dependent against 
human melanoma [30, 76]. Lansoprazole pretreatment for 
24 h significantly increased the therapeutic effects of pacli-
taxel against human metastatic melanoma cells, exclusively 
when cultured in unbuffered condition, conceivably due to 
the reduced pH mimicking the spontaneous acidification of 
tumors [76]. The acidity played opposite roles in inducing 
an increase of the PPI activity and a decrease in paclitaxel 
effect. Actually, the fact that a low extracellular pH caused 
higher resistance to paclitaxel has ever been proved in breast 
cancer cell line MCF-7 [16]. An additional effect of PPI 
treatment on human melanoma cell lines is the autophagy 
modulation. Melanoma cells treated with esomeprazole 
rapidly accumulated autophagosomes and LC3-II protein 
within few hours, at the same time reducing the autophagic 
flux. Moreover, esomeprazole treatment caused a consistent 
inhibition on the mTOR signaling pathway with reduced 
phosphorylation of p70-S6K and 4-EBP1. Inhibition of 
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autophagy by knockdown of Atg5 and Beclin-1 or by bafilo-
mycin A treatment significantly enhanced the cytotoxicity of 
esomeprazole, strongly indicating that autophagy may rep-
resent an adaptive survival mechanism of melanoma cells in 
response to PPI insult. Following by autophagy, esomepra-
zole induced apoptosis of melanoma cells through a caspase-
dependent pathway involving cytosolic acidification and the 
accumulation of ROS derived from mitochondrial dysfunc-
tions and NADPH oxidase [77]. Although belonging to the 
same family, PPIs have shown different anti-tumor efficacy 
in metastatic melanoma cells. Among them, lansoprazole 
revealed the highest efficacy both in vitro and in vivo, main-
taining its efficacy over time even upon drug removal from 
the cell culture medium confirming the validity of pulse 
administration in clinical conditions [78].

Lymphoma

Lymphoma is the third most common childhood malignancy, 
accounting for approximately 15% of cancers diagnosed in 
children (0–14 years of age) [79]. Despite good response 
rates obtained from poly-chemotherapies, a relevant propor-
tion of lymphoma patients are not cured for some reasons 
including chemoresistance, relapses, severe toxicity, and 
secondary malignancies. Fortunately, PPIs have shown var-
ied anti-tumor effects in lymphoma. Omeprazole induced 
apoptosis in human lymphoblastic T cells by upregulating 
both caspases and lysosomal cysteine protease [80]. More-
over, omeprazole and esomeprazole induced apoptosis of 
human B cell lymphoma cells through the alteration of pH 
gradients regulation as well as ROS production, enhance-
ment of lysosomal membrane permeabilization, and MMP. 
Despite the presence of active caspases in PPI-treated cells, 
the pan-caspase inhibitor z-VAD-fmk had no effect on PPI-
induced apoptosis, suggesting that activated caspases were 
not instrumental in the pro-apoptotic effect of PPI on human 
B cell lymphoma cells [81]. Obviously, the in vivo effective-
ness of PPI depended on the ability of tumor cells to acidify 
their environment, allowing first the drug to target tumor 
cells and then to be activated in situ. Pantoprazole has shown 
a significant retardation of tumor progression on a murine 
model of a transplantable Dalton’s T cell lymphoma (DL) 
via the reversal of acidosis in tumor microenvironment to 
a neutral pH, which was due to the inhibition on the func-
tion of V-ATPase and another pH regulator MCT-1 in tumor 
cells. The down-regulation of HIF-1α genes, Bcl-2, Hsp70, 
GLUT-1, SOCS-5, and CD62L proteins along with an aug-
mentation on the expression of PUMA genes, p53, and CAD 
proteins were observed in tumor cells after PPI treatment. 
Besides, the neutralization of pH following pantoprazole 
administration was conducive for the host’s anti-tumor 
immune responses because of the elevation in the levels of 
IL-6 and IFN-γ along with an inhibition on IL-10, IL-4, 

and TGF-β in the ascitic fluid of pantoprazole-administered 
tumor-bearing mice [82]. These evidences suggest that the 
regulation of cellular pH may represent a suitable target for 
novel anti-tumor strategies and indicate the potential use of 
PPIs as anti-neoplastic agents towards lymphoma.

Leukemia

Leukemia is a malignant disorder resulting in impairment 
of blood cell production and unrestrained proliferation of 
immature blood cells. In 2017, 62,130 new leukemia cases 
and 24,500 cancer deaths are projected to occur in the United 
States [83]. As early as 1999, omeprazole has been shown to 
exert a significant potentiating effect to hypericin-mediated 
cytotoxicity by reducing the intracellular pH in human leu-
kemic HL-60 cell line [7]. Besides, at low dose (13 μM), 
either omeprazole or esomeprazole pretreatment signifi-
cantly increased the sensitivity of the pre-B acute lymph-
oblastic leukemia (ALL) cells to the cytotoxicity induced 
by vinblastine, a commonly used chemotherapeutic agent 
in the treatment of ALL. In addition, bone-marrow-derived 
leukemic blasts cells isolated from patients with ALL were 
remarkably sensitive to the dose-dependent apoptosis-induc-
ing effects of omeprazole [81]. Tyrosine kinase inhibitors 
(TKIs), imatinib, and nilotinib are currently approved for 
the treatment of newly diagnosed chronic phase chronic 
myeloid leukemia (CP-CML) patients. It has been found 
that the intracellular concentration of nilotinib was signifi-
cantly increased accompanying with a concomitant decrease 
in  IC50 in the presence of pantoprazole which was capable 
of blocking ABCB1-mediated nilotinib efflux, while there 
was no significant effect for imatinib [84]. This result was 
consistent with the findings of Yin et al. [85]. These findings 
provided support for the clinical observation of enhanced 
response rates in CP-CML patients treated with nilotinib 
and PPIs. Moreover, PPIs can greatly prevent patients from 
TKI-induced gastrointestinal side effects.

Myeloma

Multiple myeloma (MM) is the second most common hema-
tological malignancy and responsive to a limited number of 
therapeutic options [86]. Recent studies found that either 
lansoprazole or omeprazole showed direct cytotoxicity 
against human myeloma cell lines in buffered medium at 
pH 6.5, an acidic condition that approximated the pH values 
observed in tumors and allowed a full activation of PPIs 
[87]. Notably, omeprazole had less cytotoxicity than lan-
soprazole. Moreover, most of the myeloma cells died of 
an apoptotic-like cell death rather than necrosis after the 
exposure to lansoprazole, while preincubation with the 
pan-caspase inhibitor z-VAD-fmk had no significant effect 
on lansoprazole-induced cytotoxicity of MM cells. This 
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suggested that activated caspases were not instrumental 
for lansoprazole-induced apoptosis in human myeloma cell 
lines, indicating that a different pathway might be responsi-
ble for the cytotoxicity of lansoprazole.

Osteosarcoma

Osteosarcoma is a rare tumor with an overall incidence of 
0.2/100,000 new cases/year. It is more frequently diagnosed 
in adolescents and young adults where it accounts for >10% 
of all solid cancers [88]. The most effective drugs used for 
treatment of osteosarcoma include cisplatin, doxorubicin, 
and methotrexate. However, resistance towards these chemo-
therapeutic agents is responsible for the failure of the osteo-
sarcoma treatment [89]. Ferrari et al. [90] presented preclini-
cal and clinical data to evaluate the activity of esomeprazole 
as chemosensitizer against human osteosarcoma. The fact 
that pretreatment of esomeprazole for 24 h significantly 
increased the activity of cisplatin in osteosarcoma both 
in vitro and in vivo, as well as credible clinical trial data, 
strongly supported the use of PPI as adjunct treatment for 
osteosarcoma patients.

Clinical investigations

PPIs have been met with outstanding success in preclini-
cal studies both in vitro and in vivo. Several clinical trials 
have been performed and others are currently underway. For 
instance, studies observed the use of esomeprazole as che-
mosensitizer in neoadjuvant chemotherapy for the treatment 
of osteosarcoma [90] and as combination treatment with 
doublet TP regimen (docetaxel and cisplatin) in metastatic 
breast cancer (Clinical Trials. gov Identifier: NCT01069081) 
[91]. It has been shown that pretreatment of cancer patients 
with esomeprazole prior to chemotherapy was effective and 
PPI administration had no additional toxicity in patients. 
Recently, a phase I study demonstrated that administration of 
high-dose pantoprazole prior to doxorubicin was feasible in 
patients with advanced solid tumors (NCT01163903) [92]. 
Patients with advanced solid tumors (n = 24) received doxo-
rubicin 60 mg/m2 and escalating doses of pantoprazole (80, 
160, 240, and 360 mg) administered intravenously prior to 
doxorubicin. Dose-level 4 (pantoprazole 360 mg) was con-
sidered to exceed the maximum tolerated dose. The median 
maximum serum concentration after injection of pantopra-
zole 240 mg was 84.3 μM, which was close to the concen-
tration shown previously to enhance doxorubicin activity in 
human tumor xenografts. Fatigue, neutropenia, and leukope-
nia were the most common treatment-related adverse events, 
similar to those that were expected following treatment with 
doxorubicin alone. Repeated intravenous administration of 
pantoprazole 240 mg did not pose any apparent additional 

safety risk when coupled with doxorubicin. Therefore, the 
recommended phase II dose of pantoprazole, 240 mg, would 
be evaluated in combination with docetaxel in patients with 
castration-resistant prostate cancer (NCT01748500). In this 
trial, autophagy markers would be detected using IHC for 
LC3B, ATG5, and p62 as well as ERG to evaluate pharma-
cokinetic interactions of pantoprazole with docetaxel (http://
clinicaltrials.gov/). More recently, a phase II study evalu-
ating the effectiveness of combination of rabeprazole with 
capecitabine at metronomic dosage of 1500 mg/die (mCAP) 
as salvage treatment for patients with advanced gastrointes-
tinal tumors was performed in Italy [93]. Positive results 
suggested that combination of mCAP and PPI was likely to 
present therapeutic hope for patients who cannot resort to 
more standard treatments. In addition, based on the prelimi-
nary laboratory investigations showing that PPIs effectively 
inhibited human FASN [62], a phase II clinical trial known 
as “Inhibiting Fatty Acid Synthase to Improve Efficacy of 
Neoadjuvant Chemotherapy” (NCT02595372) is under plan-
ning and currently recruiting participants.

There are also two phase I/II studies in companion ani-
mals with spontaneously occurring tumors to evaluate the 
feasibility of modulating the acidic tumor microenvironment 
by PPIs [94, 95]. Results were very positive as the treat-
ment with PPIs resulted in the down staging of tumors for 
the vast majority of the animals, suggesting that alkaliniza-
tion of advanced cancer patients will probably become an 
adopted strategy in veterinary oncology due to its low cost, 
better tumor control, and limited toxicity. However, very lit-
tle is known as to whether cancers in animals share the same 
pathological characteristics with that in human regarding 
tumor microenvironment.

Perspectives and conclusions

This review has pointed out the novel anti-tumor effects of 
gastric PPIs, and extended the clinical application as anti-
cancer agents by targeting V-ATPase or other molecular tar-
gets on cancer cells (Figs. 1, 2). Still, several issues remain 
controversial. First, to date, the revealed molecular mecha-
nisms underlying anti-cancer effects of PPIs are far from 
conclusive. PPIs were found to have impact on the pathways 
that were actually involved in the effect of tumor acidity, 
including Wnt/β-catenin, mTOR, HIF-1α, P-gp, and MAPK 
subfamily (p38 and ERK). In the meantime, PPIs could 
also interact with acidity-unrelated proteins such as PKM2, 
TOPK, AHR, and FASN. The V-ATPase is recognized as the 
novel target of PPIs, which has been confirmed in various 
tumors. Other molecular targets are limited to certain tumors 
and need further studies and exploration. Second, it is known 
that PPIs are prodrugs requiring activation in acidic envi-
ronment. However, PPIs were also effective in vitro when a 

http://clinicaltrials.gov/
http://clinicaltrials.gov/
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“physiological” pH of the medium (7.4) was used [47, 57, 
61, 70]. This indicated that some other targets might exist 
for PPIs in tumor cells besides activating in acidic intracellu-
lar compartments. Third, the required concentration of PPIs 
in vitro for anti-cancer purpose was higher than that in the 
clinical treatment of acid-related diseases. This gastropro-
tective dose of PPIs would probably be insufficient to elicit 
anti-tumor effects in vitro. Actually, most in vitro studies 
did not consider some microenvironmental factors that may 
affect drug distribution in solid tumors. It is believed that 
PPIs may achieve higher local concentrations at tumor site. 
Moreover, patients with advanced solid tumors have shown 
good tolerability when treated with PPIs at relatively high 
doses of up to 240 mg [92]. Fourth, drug interactions in 
pharmacokinetics must be considered when combining PPIs 
with anti-cancer drugs. Omeprazole are primarily metabo-
lized by cytochrome P450 (CYP450) enzymes with high 
affinity. It has, therefore, been suggested that omeprazole 

might enhance the effect of anti-cancer agents which are also 
metabolized by CYP enzymes. However, until now, it has 
not been found that PPIs alter the pharmacokinetics and tox-
icities of anti-cancer agents. Therefore, the synergy between 
PPIs and anti-cancer drugs is based on pharmacodynamics 
rather than pharmacokinetics. Fifth, while belonging to the 
same family of generic drugs, PPIs show different anti-tumor 
effects. Prior studies have described that lansoprazole has 
shown higher anti-tumor effect, compared to other PPIs [67, 
78]. However, the conclusion should be taken with caution 
in view of both the physiochemistry of different PPIs such 
as pKa values and the pathological characteristics of various 
tumors. Last but not least, despite being overall safe drugs, 
several long-term adverse effects are associated with PPIs, 
particularly regarding the possibly higher risk of gastric can-
cer caused by PPIs. Some case reports suggested that the 
long-term use of PPIs could promote the development of 
gastric pre-malignant lesions with a potentially increased 

Fig. 1  Molecular mechanism of PPIs targeting V-ATPase on the 
plasma membrane and acidic organelle membranes of cancer cells. a 
In cancer cells, the extrusion of protons by V-ATPase causes intracel-
lular alkalinization and extracellular acidification, which are impor-
tant mechanisms favoring proliferation, metastasis, and chemoresist-
ance of cancer cells. b PPIs treatment might provoke disruption of pH 

homeostasis by inhibiting the activity of V-ATPase, thus depriving 
them of malignant behaviors. Besides, PPI-induced intracellular acid-
ification contributes to the accumulation of ROS and pro-apoptosis 
through mitochondrial dysfunction in cancer cells. The disturbance of 
the lysosomal pH regulation by PPIs leads to reduced autophagic flux
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incidence of gastric cancer [96–98]. Nevertheless, the value 
of such studies was limited by patient selection and other 
possible biases (due to patient characteristics and contem-
porary use of other drugs).

In summary, PPIs may be repositioned as new anti-cancer 
drugs for at least three important features: (1) the potential 
selectivity in targeting tumor acidity where they can be con-
verted to the active drugs, (2) the ability to inhibit mech-
anism pivotal for cancer homeostasis, and (3) the known 
pharmacokinetics, toxicology, and safety profiles. Never-
theless, more preclinical and clinical trials are needed to 
provide more precise molecular mode of action for targeted 
therapies of PPIs in cancer, and to conform the compatibility 
of drugs, efficacy, and adverse events.
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